The Performance Comparison of Hadoop and Spark in Agriculture
Big Data Processing

Van-Quyet Nguyen, Sinh Ngoc Nguyen, Duc Tiep Vu, Kyungbaek Kim
Dept of Electronics and Computer Engineering,
Chonnam National University
e-mail : quyetict@utehy.edu.vn, sinhngoc.nguyen@gmail.com, ductiep91 @gmail.com,

kyungbaekkim@jnu.ac.kr
o o
I =

Nowadays, massive data are generated in every minute through multi-devices such as sensors
and smartphones, and it leads to the challenges of big data. Meanwhile, most traditional data
processing systems are designed for local computation and they do not scale well to big data
problems which have large requirements of computational resources and storage. In order to deal
with big data, many researchers have been designed the big data platforms using Hadoop and
Spark framework, and simple comparison has been done in past. However, no comprehensive
study related to the performance of these two frameworks in the aspect of the volume of data
and the complexity of computation. In this paper, we highlight the performance comparison
between Hadoop and Spark in two cases: one is to conduct arithmetic calculation on massive
agriculture data with various size of data and another is to perform K-mean clustering algorithm
on the soil data with different number of iterations. We also present how to tune environment
parameters such as memory limitation and data chunk size in Hadoop and Spark to achieve
better performance. Through the evaluation with practical agricultural data, we experimentally
verify that Spark is faster than Hadoop in several times.

1. Introduction memory-oriented architecture and flexible processing

L. libraries. These two frameworks are being widely used
In recent years, data has become ubiquitous. The)) o
. . . in many big data applications. There have been a
analysis of these data provides many benefits in many . .
; duily it o ol number of studies for the performance comparison of
aspects of our daily life. For example, in agriculture Hadoop and Spark [5][6]. However, no comprehensive

sector, farmers have to measure and understand the study has been done to analyze the impact factors to

impact of a huge amount and variety of data which the performance of these two frameworks. In this

drive overall quality and yield of their fields such as paper, we highlight the performance comparison

weather data and soil data; however, these data are between Hadoop and Spark in two cases: (1) processing

being generated in every second that leads to the massive agriculture data with the growth of data size

challenges of big data. Therefore, developing a big data and (2) clustering soil data using K-means algorithm

platform for handling massive data in real-time is which has many iterations in computing.

particularly evident and plays an extremely important Our work makes the following contributions:

role. ® Firstly, we implemented two algorithms in both of

Apache Hadoop [1] has been the most popular two frameworks Hadoop and Spark for performance

framework for big data processing. It provides a comparison. The first algorithm is to compute the
parallel computation model MapReduce [2] and Hadoop
distributed file system (HDFS) [3] module. Recently,

Apache Spark [4] has emerged as a leading distributed

farms’ field area. The second algorithm is to cluster
soil data based on its chemical characteristics.
® Secondly, we experimented and highlighted the

computing framework for real-time analytics with its performance comparison between Hadoop and Spark.

ISSN 2287-4348 St=ADLEDICIONS S & St=2A X HHS R 20168 FAHS = =28 105 Page

20169 &
Therein, Spark is faster than Hadoop in several
times.
® Finally, we presented how to tune environment
parameters in Hadoop and Spark to achieve higher
performance.
2. Background

In this section, we describe an overview of Hadoop
and Spark that frameworks we are going to compare
the performance in this paper.

2.1 Hadoop and MapReduce

Apache Hadoop is a framework that allows for the
distributed processing of large data sets across clusters
of computerss [1]. The current Hadoop version consists
of (1) HDFS (Hadoop
Distributed File System) that provides high—-throughput
(2) YARN (Yet Another
is a framework for job
scheduling cluster resource management, (3)
MapReduce a YARN-based system for parallel
processing of huge datasets, and (4) Hadoop Utilities

four main components:
access to application data,
Resource Negotiator) that
and

is

that provides common utilities to support the other
Hadoop modules.

MapReduce is a programming model that supports
to run programs in parallel on large distributed system.
This model uses a map function that processes a
key/value to generate a set of intermediate key/value
pair and a reduce function that gathers all values with
the same intermediate key to process and returns the

results.
2.2. Overview of Spark

Apache Spark is a new cluster computing
framework that is designed for fast computation. It
uses the concept of RDD (Resilient Distributed

Datasets) that lets users store data in memory across
queries. This lets RDDs be read and written up faster
than typical distributed file systems (e.g., HDFS). There
are five main components in Apache Spark: (1) Spark
Core, (2) Spark SQL, (3) Spark Streaming, (4) MLIib
(Machine Learning library), and Graphx. In this paper,
we evaluate the performance of Spark using MLIib that

is a distributed machine learning framework.

3. The Performance Comparison
3.1 Case studies of evaluation

We present a couple of case studies for performance
evaluation of Hadoop and Spark. In the first case, the
performance is evaluated by an algorithm computing
the total field area of each farm. The second case
study will evaluate the performance of running a
parallel K-means algorithm for clustering the soil data

based on soil chemical characteristics.

ISSN 2287-4348

W
o
|
N
&
S
1o
N
2
(e}
m
H
I
x

Field Area Computation.

At the current time, we have a 2GB of agriculture
data with more than 11 millions of records that contain
the the
information such as field products and the area over

information about farm and its related

each field product. There are many farms in our
dataset and each farm has a lot of field products. In
this case, we implement a simple algorithm on both

Hadoop and Spark to compute the total field area of

each farm. The purpose of this case study is to
evaluate the performance of Hadoop and Spark in
processing huge amount of data without iterative

computation.

Soil data clustering with Kmeans algorithm

The purpose of this case is to evaluate the
performance of Hadoop and Spark in processing a huge
amount of data with an iterative algorithm, and because
of that,
algorithm
method.

features into k number of groups. K-means algorithm

we chose K-means algorithm. K-means

is the most well-known wused -clustering

It groups objects (data points) based on
performs the following steps:

Step I: Select k data points from dataset to be used as
cluster centroids (random)

Step 2: Assign data points to clusters according to
their distance to the cluster centroids.

Step 3 For each cluster, recompute the cluster centroid
using the newly computed cluster members.

Step 4. Go to step 2 until the process converges.

In k-means algorithm, the computation cost is made

in the calculation of distances step (Step 2) in which
total of (n*k) distance
the performance of the

distance calculation is the key for improving the time

each iteration require a

computations. Therefore,
performance of the algorithm. To do this, we can
process the distance calculation in parallel by using
MapReduce or Spark because the execution orders of
distance calculation of data points will not affect the
final result of clustering.

For running the algorithm on Spark, we implement a
Java program to set up the parameters and call
functions of K-means algorithm in Spark MLIib library.

3.3. Experimental Evaluation

Experimental setting. Our experiments were run on
in which, both Hadoop and
Spark are deployed on five machines: one machine for

the distributed system,

master node, and four others for compute nodes. Each
compute node has 4 CPUs and 8GB of RAM. All
algorithms are implemented in Java.

Experimental Results.
For field area computation case, to evaluate the

106 Page

ha N w w
=TT R =T
\ \

Hadoop

=
w

| Spark

Execution Time (seconds)

-
=]
L

(=TT
L L

512 1024 1536 2048
Size of data (MB)

Figure 1. Performance comparison of Hadoop
and Spark with varying of data size.

140

120

100

80

60 | % Hadoop

8 Spark
40 - i

Execution Time (seconds)

.

20 -

1K 2K 4K 6K

Number of data points

Figure 2. Hadoop and Spark with varying
number of data points in K-means algorithm

performance of Hadoop and Spark on various size of
dataset, we varied the data size from 0.5GB to 2.0GB.
The result of this case is shown in Figure 1. We can
see that the algorithm running on Spark outperforms
Hadoop in all cases of data size. Thus, in this case,
Spark is faster than Hadoop 1.4 times in an average of
execution time.

For soil data clustering with K-means algorithm, we
experimented with four cases of varying number data
points, the number of data partitions, the number of
iterations of K-means algorithm, and the number of
clusters.

Figure 2 and Figure 3 show the results of running
K-means with 4 clusters on Hadoop and Spark, in
which the convergence is achieved. In the result, we
observed that Spark is 55 and 5.7 faster than Hadoop
for varying number of data points and varying number
of data partitions, respectively. While Figure 4 shows
the execution time of Hadoop and Spark with varying
the number of iterations, that is, Spark proved effective
than Hadoop when the number of iterations of the
algorithm increases. We can see that after 2 iterations
Spark is faster than Hadoop about 2 times, but it is
approximate 6 times after 8 iterations.

The result in Figure 5 shows the performance
comparison of Hadoop and Spark of running K-means

ISSN 2287-4348 St=ADLEDICIONS S & St=2A X HHS R 20168 FAHS = =28

[
=2
(=]

[y
S
(=]

[uy
[
(=]

Hadoop

co
(=]

| Spark

Execution Time (seconds)
=)
(=]

B
o

[
o

o
'

8 16 32
Number of partitions

-

Figure 3. Hadoop and Spark with varying

number of data partitions in K-means algorithm

140

120

40

20 ++%

-

E 60 g % Hadoop

'g % B8 Spark
% -

2 4 6 8
Number of iterations

Figure 4. Hadoop and Spark with varying

number of iterations in K-means algorithm

140

120

100

80

50 % Hadoop

Spark
40 + P

Execution Time (secnds)

R

20 A

0 4

Number of K-means clusters

Figure 5. Hadoop and Spark with varying
number of clusters in K-means algorithm

algorithm with a different number of clusters. That is,
Spark also runs faster than Hadoop a fluctuation from
4 to 6 times.

4. Discussion

From the result in previous section, we can see that
the performance of Hadoop and Spark affected by some
parameters configuration such as the number of data
partitions (see Figure 3). If the size of dataset is the
same, a smaller number of data partitions fitting with
the maximum the number of containers managed by
YARN will obtain better performance. In the case of

107 Page

running K-means algorithm, 8 data partitions given the
best performance; meanwhiles, 32 data partitions given
the That
because, in our system, we configured 2GB for each

lowest performance in our experiment.
map and reduce task; therefore, 16 is the maximum
number of containers that YARN can allocate for
running an application. However, one of them is used
to run AppMaster, so 15 map/reduce (in Hadoop) or
executor (in Spark) tasks can be run in concurrent to
achieve the best performance. If the dataset is split
with the number of partitions more than that number,
one of slave node/worker node will take more than one
tasks, but if the number of partitions too small, it does
not utilize the capability of the system.

There are several ways to tune Hadoop and Spark;

however, for space constraints, in this paper, we only
describe two ways in detail to achieve better
performance.

Changing the number of data partitions. To split a
huge dataset into small input file, we can change the
block size of HDFS thought dfs.blocksize property in
hdfs-default.xml file or change the value of property
mapreduce.input.fileinputformat.split. minsize n
mapred-default.xml file. By default, the value for this
property is 128MB. The size of each input file should
be set as shown the Equation 1.

. S
size m
where S is the size of dataset in byte, k is a positive

split 1)

integer, and M is the maximum number of contains of
the system can be allocated for a job that can be
estimated by Equation 2.

M = min (2 X cores, RAM,, ijone! Coin — sizve) (2)

the of CPUs

is the total amount of memory (in MB)

where s number

RAM,

of the system, Cl i, _ 5. 1S the minimum amount of

cores cores,

vailable

memory (in MB) that YARN allocate for a container.
should the
minimum value of k such that each map/reduce task

Therefore, in Equation 1, we choose

can handle a split depending on the problem. This

size
will maximize the number of map/reduce or executor
tasks with a balanced workload.

Changing the number of containers. From Equation 2,
we can see that the number of containers that YARN
can allocate for a job depending on the minimum
amount of memory that YARN allocate for a task.
Moreover, it also depending on the amount of memory
that we set up for each map/reduce or executor task.
To achieve a better performance we can change these
properties depending on estimating the require amount

of memory per task of the problem. To set up the
minimum size of memory for a container we can

change the value of
yarn.scheduler.minimum-allocation-mb property in
yarn-site.xml. And, for modifying the amount of

memory per task we can change the value of two

properties mapreduce.map.memory.mb and

mapreduce.reduce.memory.mb.

5. Conclusion
In this paper,

comparison between Hadoop and Spark with two case

we highlighted the performance

studies: processing a large amount of data with various
size of data and handling iterative computations with
K-means algorithm. Using practical agriculture dataset,
we experimented and shown that Spark is faster than
Hadoop in few times.

In the
implement the big data platform using both Hadoop and

future work, we plan to design and
Spark to provide the services and applications for
analysis the data in agricultural production and disaster
warning notification system.
Acknowledgements

This work was carried out with the support of
"Cooperative Research Program for Agriculture Science
and Technology Development (Project No. PJ01182302)”
Rural Development Administration, Republic of Korea.
This work was supported by the National Research
Foundation of Korea Grant funded by the Kkorean
Government(NRF-2014R1A1A1007734). This research
was supported by the MSIP(Ministry of Science, ICT
the
ITRC(nformation Technology Research Center) support
program (IITP-2016-R2718-16-0011) supervised by the
I TP(Institute &
Technology Promotion).

References

[1] Apache Hadoop, http://hadoop.apache.org (2009).
[2] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
simplified data processing on large clusters.”
Communications of the ACM 51.1 (2008): 107-113.
[3] Borthakur, Dhruba. "HDFS architecture guide.”
HADOOP APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf (2008): 39.
[4] Zaharia, Matei, et al. "Spark: Cluster Computing
with Working Sets.” HotCloud 10 (2010): 10-10.
Satish,

and map

and Future Planning), Korea, under

for Information communications

[5] Gopalani, and Rohan Arora. "Comparing
with performance

of

apache spark reduce
analysis using K-means.” International
Computer Applications 113.1 (2015).

[6] Pan, Shengti. "The

Hadoop and Spark.” (2016).

Journal

Performance Comparison of

ISSN 2287-4348 St=AOIEDICINS R & STt sl 20169 FHSt=He =28 108 Page

